BS ISO/IEC 30106-1:2016

J'"..-

BS| Standards Publication

Information technology —
Object oriented BioAP| —

Part 1: Architecture

..making excellence a habit.

BS ISO/IEC 30106-1:2016 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO/IEC
30106-1:2016.

The UK participation in its preparation was entrusted to Technical
Committee 1ST/44, Biometrics.

A list of organizations represented on this committee can be
obtained on request to its secretary.

This publication does not purport to include all the necessary
provisions of a contract. Users are responsible for its correct
application,

© The British Standards Institution 2016.
Published by BSI| Standards Limited 2016

ISBN 978 0 580 75162 2
ICS 35.040

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 31 March 2016.

Amendments/corrigenda issued since publication
Date Text affected

BS ISO/IEC 30106-

INTERNATIONAL ™
STANDARD ISO/IEC
30106-1

First edition
2016-03-15

Information technology — Object
oriented BioAPI —

Part 1:
Architecture

Technologies de l'information — Objet orienté BioAPI —
Partie 1: Architecture

Reference number
ISO/IEC 30106-1:2016(E)

© ISO/IEC 2016

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either [SO at the address below or 1SO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva,
Switzerland

Tel. +41 22 749 01 11 Fax
+41 22 749 09 47
copyright@iso.org
WWWw.iso.org

ii © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

Contents Page

0 0] O | 14
5 Lo o0 10 L o) o OO, 4
1 1 o0 = 1
A 0 b T o= =) g 1

Terms and defimatiONIS . oottt

Symbols and abbreviated termsS. ..

1 = W I

Object Oriented BioAPI arChit@ChUIre. ...t
5.1 Summary of BIOAPI architeCture
5.2 BioAPI compatibilify reqUiremMIenTs. ... s
5.3 Graphical User Interface [GUI]
54 Implementation guidelines.....
5.4.1 Basicconcepts............
54.2 BioAPI_Unit develnpment
54.3 BFP development...
54.4 BSP development... S
54.5 Framework and mmpﬂnent reglstr}r
54.6 Application development...
6 BiOAPI CBEFF Patrom FOTTMAtS ..ot s e
6.1 GEEIVBT AL e
6.2 SIMIPLE BIR .ot e
6.3 COMPLEX BIR et et
T8 700 Y o o 1) R
6.3.3 Parent BIR ...t

7 L0 0 0 = 1 1 1.
7.1 = 0 =) o=
7.2 BIOIMIBETIC LY PIBS oottt Bt
7.3 BIOMELIIC SUDEYPS et
7.4 N 00) o 0 16 =

8 OO0 BIOAPT UML SEFUCEUI® ... b e
8.1 General...
8.2 Relatmnshlps amnng data structures

PR OO ANN = = =

PN
o s

= = = e ek
00 ~1 ~1 ~1 <]

P DD IN
[

8.3

8.4
8.5
8.6
8.7

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

8.3.1
8.3.2
8.3.3
8.3.4

Class BIR...

Class UnitSchema ...
(00 FETSTT 51 2 S Tod 4 1) 0 1 1= VOO
Class B P S CROIMIA ...ttt oottt ettt
Class FrameworKS Chemua. e
R0 YN o I D o (ot =
L o] 3 AT = T
T OIMUPATTISOIY oo
P T OCOSSIIIE ..ot
=] 8 10)
|2 2 A (=
B30 e 1 (o1 0) = SO
2] g Lk o) o o) (o 61 OO
Application Telated SEIUCTUTE. ... s bbb e

© ISO/IEC 2016 - All rights reserved

B RO B B B N B N N B N NN NN
O 00 00~ ~1Ch O U1 LT U1 B o N

111

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with 1SO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,

ISO/IECTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, SC 37, Biometrics.

ISO/IEC 30106 consists of the following parts, under the general title Information technology — BioAPI
for object oriented programming languages:

— Part 1: Architecture
— Part 2: Java implementation

— Part 3: C# implementation

v © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

Introduction

The existing versions of BioAPI (ANSI version-INCITS 358 and ISO/IEC 19784-1) specify an application
programming interface expressed in the C language. The use of a portable language like C ensures
the BioAPI is accessible across multiple computing platforms and application domains. BioAPI is an
appropriate fit for applications written in C and is adequate for applications written in C++.

Unfortunately, a function-based language like C does not map easily to the object oriented domain where
this issue may be answered with an object oriented (OO) version of BioAPI. As noted, the function-
based nature of a C API does not map easily to the object oriented paradigm (i.e. languages such as C#
and Java). In particular, the use of a C API from within an object oriented application is unnatural and
requires programming constructs which introduce complexity to the development of an application.
Development of a OO version of BioAPI aims to increase the productivity of software practitioners who
who wish to use the BioAPI whilst remaining in the object oriented domain.

A standard object oriented version of BioAPI allows, in case of Java, BSPs that are intended for loading
into a Java-based application server to perform verification and/or identification operations. In those
application servers, use of the OO0 BioAPI is more natural when developing a framework and BSPs than
the C version of BioAPI.

Another area in which a standard OO version of BioAPI would be useful is that of small computing
devices based on an object oriented language (OOL), where (as on the large application servers
mentioned above) an 00 BioAPI framework and OO BSPs would fit better than their C counterparts.

This part of ISO/IEC 30106 is expected to have the following impact:

— enable creation of BioAPI applications by developers more comfortable with Object Oriented
Languages;

— create a market of standard OO BSP components which target 00 environments such as Java
application servers, Java applets, small Java devices, .NET servers, .NET applications, web services;

— increase the level of adoption of BioAPI by decreasing the barrier of entry for OO developers. This
includes providing access to C based BSPs (as if they were 00 BSPs) through special versions of the
BioAPI framework, bridging a standard OO BioAPI framework to a standard C BioAPI framework.

© ISO/IEC 2016 - All rights reserved v

BS ISO/IEC 30106-1:2016

BS ISO/IEC 30106-1:2016
INTERNATIONAL STANDARD ISO/IEC 30106-1:2016(E)

Information technology — Object oriented BioAPI —

Part 1:
Architecture

1 Scope

This part of ISO/IEC 30106 specifies an architecture for a set of interfaces which define the OO BioAPI.
Components defined in this part of ISO/IEC 30106 include a framework, Biometric Service Providers
(BSPs), Biometric Function Providers (BFPs) and a component registry.

NOTE Each of these components have an equivalent component specified in ISO/IEC 19784-1 as the 00
BioAPI is intended to be an OO interpretation of this part of ISO/IEC 30106.

For this reason, this part of ISO/IEC 30106 is conceptually equivalent to ISO/IEC 19784-1. Concepts
present in this part of [SO/IEC 30106 (for example, BioAPI_Unit and component registry) have the same
meaning as in ISO/IEC 19784-1. While the conceptual equivalence of this part of ISO/IEC 30106 will be
maintained with ISO/IEC 19784-1, there are differences in the parameters passed between functions
and the sequence of function calls. These differences exist to take advantage of the features provided
by Object Oriented Programming Languages.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

[SO/IEC 2382-37, Information technology — Vocabulary — Part 37: Biometrics

[SO/IEC 19784-1:2006, Information technology — Biometric Application Programming Interface — Part
1: BioAPI Specification

ISO/IEC 19785-1:2015, Information technology — Common Biometric Exchange Formats Framework —
Part 1: Data Element Specification

[SO/IEC 19785-3:2015, Information technology — Common Biometric Exchange Formats Framework —
Part 3: Patron format specifications

3 Terms and definitions
For the purposes of this document, the terms and definitions in ISO 2382-37, ISO/IEC 19784-1, and
[SO/IEC 19785 (all parts) apply.

4 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms defined in ISO/IEC 19784-1,
[SO/IEC 19785 (all parts) and the following apply.

API Application Programming Interface
BDB Biometric Data Block
BFP Biometric (00) Function Provider

© ISO/IEC 2016 - All rights reserved 1

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

BIR Biometric Information Record
BSP Biometric Service Provider
CBEFF Common Biometric Exchange Formats Framework
FMR False Match Rate
FPI Function Provider Interface
GUI Graphical User Interface
1D Identity/ldentification/Identifier
MOC Match on Card
OO0BioAPI Object Oriented BioAPI
PID Product ID
SB Security Block
NOTE This term and abbreviation is imported from ISO/IEC 19785-1.
SBH Standard Biometric Header
NOTE This term and abbreviation is imported from ISO/IEC 19785-1.
SPI Service Provider Interface
UuID Universally Unique Identifier

5 Object Oriented BioAPI architecture

5.1 Summary of BioAPI architecture

Object Oriented BioAPI shall be defined in a way thatallows both structured development of applications
and services, as well as interoperability between application and BSPs, and among BSPs. Therefore, the
definition has to be done respecting the hierarchical structure of BioAPI (19784-1). In few words, an
application shall be developed using an OO BioAPI that allows the instantiation of a BSP, which is based
on the instantiation of one or several BioAPI_Units. The BSP can host more than one BioAPI_Unit of each
category, and several units of each type can be used at any time, no presenting any kind of limitation
on the units to be used in a BSP. This makes it necessary for all methods to provide the reference to the
unit to be used in each of the operations.

An application is not permitted to directly access BioAPI_Units. Therefore, this part of ISO/IEC 30106
does not define a BioAPI_Unit interface, but only an object oriented hierarchical interface/class
model that may ease the implementation of the BSP. The BSP shall inherit all public methods and data
structures for each BioAPI_Unit the BSP encapsulates. Itis the responsibility of the BSP’s implementation
to determine which functions of the BioAPI_Unit are offered to clients of the BSP. Note, an exception
should be returned for any BSP interface method that is not implemented in the BSP. This is represented

in Figure 1.

Programming an application, which interacts directly with a BSP, introduces practical considerations
for the application designer. One such consideration is dealing with third-party suppliers who provide
biometric components for use in applications. For example, a supplier of sensors may desire to include
support for their entire family of sensors as a single entity (e.g. a library). To achieve this, the supplier
may consider implementing the library as a single BSP, but may choose to not implement monolithic
methods (i.e. aggregated functionality such as Enrol, which does in one single call the capture, the
processing of the sample, the creation of the biometric reference and even the archiving). Without
monolithic methods, the BSP forces the application to take responsibility for the implementation
of monolithic style functionality. This situation means the BSP may pass biometric data back to the
application so the application may perform processing. The application may then need to pass this data
on to another BSP for additional processing. In some contexts, the passing of data out to an application
may simply be inefficient, in other contexts this may be a security concern. A possible solution for this
inconvenience is to allow the hypothetical sensor BSP to interact directly with other BSPs, rather than
involving the application in the management of this communication. To achieve this, the biometric

s © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

product provider may create an entity (e.g. a library) containing several BioAPI_Units of the same kind.
This is called a Biometric Function Provider (BFP) and exhibits the following characteristics.

— The BFP shall only host BioAPI_Units of the same category.

— The BFP is meant to allow that a BSP is linked to one of its BioAPI_Units, in order to complete or
adapt the functionality of the BSP.

— The BFP shall not provide functionality directly to the application, but only link to the BSP. The BSP
communicates with the BFP on behalf of the application. The BSP is responsible for providing the
BFP’s functionality to the application.

The above mentioned situation also solves a problem from developers’ point of view, which deals with
simplicity in developing applications. If an application may require to use BioAPI_Units from different
providers (e.g. a sensor from one provider and processing, comparison and archive BioAPI_Units from
other provider), then it will have to load two different BSPs, calling each of the methods independently.
As mentioned earlier, this has the inconvenience that it won't be possible to call a monolithic method,
such as Verify(), which performs the data capture, the processing, extraction of the biometric reference
from the database, the comparison and taking the decision, all within the same single call. Then, the
application programmer will have to know which individual methods have to be called from each of
the BSPs, in order to get the same functionality. To summarize, a level of abstraction and efficiency is
achieved through the use of BFPs to segregate functionality into discrete sets. Each BFP aggregates a
set of functionality provided by a product supplier (through a BioAPI_Unit). These BFPs are used by
a BSP, where the BSP combines functionality from each BFP to offer monolithic methods for use by a
client. The client application may then call the monolithic methods in the BSP without concern for the
underlying implementation offered by a product supplier.

Another consideration for an application designer is the concern about security in regards to certain
operations. Biometric data is typically sensitive personal data and some implementations of OO BioAPI
may require the client application is not capable of directly accessing this data (ie: BIRs). By taking
advantage of BFPs, and the abstraction facilities they offer, the possibility of tampering by malware or
malicious users at the application level is removed. By using BFPs, all sensitive data will be handled at
a level no higher than the BSP level. This means no BIR will be accessible to the application, not only
simplifying application development, but eases concerns in relation to security.

The BFP shall not be accessed directly by the application. BioAPI calls are created to allow the
application to know the BioAPI_Units that are contained in the BFPs so that the application may later
request one BSP to include one of those BioAPI_Units of the BFP. This is done through a component
registry and the procedure is further described in 5.4.

All the above ideas shall be implemented to allow the dynamic selection of components to be used by
the application, but with no a-priori knowledge from the application developer. This is achieved by
the inclusion of a common framework, which shall be installed in the system where the application
is expected to be running. Then, the application shall request the framework for the list of the BSPs
and BFPs installed, select the BSPs (with the requested selection of BioAPI_Units from BFPs) to be
instantiated dynamically by the framework, and then accessing their methods and data structures
through the framework. The application shall never be allowed to access the BSPs directly. This is
summarized in Figure 1.

© ISO/IEC 2016 - All rights reserved 3

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

Unitl Unit2 | ... | UnitN Unitl Unit2 | ... | UnitP
Legend:
ey 311 06-specified <+ -—-— -3 |mplementation specific

Figure 1 — Generic structure of a framework-based application

BSPs may be accessed by several applications at the same time, and it may also happen that BioAPI_
Units in the BFPs are also accessed by several BSPs at the same time. It is up to the implementation
of the framework the way that this implemented (e.g. this may be done by queuing requests from the
different sources, or by responding to occurring events).

For those developers that are familiar with ISO/IEC 19784, it is important to provide a relationship
about the interfaces there defined and the different layers that compose these International Standards.
The correspondence between both International Standards is given in Table 1.

Table 1 — Correspondence between ISO/IEC 30106 and ISO/IEC 19784 interfaces

Interface in ISO/IEC 30106 Interface in ISO/IEC 19784
[Framework . API
IBSP SPI
IBFP SFPI

Along the ISO/IEC 30106 series, the Unit level will be also specified, not as for specifying a different
interface, but for structuring in a hierarchical way the support for each of the categories of BioAPI_
Units at the IBSP or IBFP interfaces.

5.2 BioAPI compatibility requirements

This part of ISO/IEC 30106 is defined as compatible with BioAPI version 3.0 (ISO/IEC 19784-1.revision
1), but the framework may be developed as to allow the cross compatibility with previous versions
of BioAPI, as to allow BioAPI 2.x compliant BSPs and BFPs to be used in an ISO/IEC 30106 compliant
application.

There is no provision to allow Object Oriented BSPs to be used in an ISO/IEC 19784-compliant
framework and application.

5.3 Graphical User Interface (GUI)

A BSP may handle by itself, the interaction between the user and the system. For example, a BSP with
a sensor BioAPI_Unit may address all the interaction by the displaying messages, illuminating LEDs

4 © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

and/or activating sounds at the sensor itself. Such kind of interaction may include providing feedback
to the user on

— the finger to be placed at the sensor,

— howtoimprove the location of the sample in the sensor (e.g. alignment of the biometric characteristic
in relation to the sensor active area),

— whether the acquisition has been done in a correct way, or
— whether the biometric comparison has led to a positive or negative decision.

But in certain cases, it may be requested that such interaction is handled by the application using such
BSP, showing all messages and illustrations in the computer screen. This may also be handled by the
BSP itself, but this can lead to certain kinds of inconveniences such as the following:

— the BSP graphical user interface may not be adaptable to the different sizes and resolutions that the
application screen is using;

— the feedback provided has to follow the same look and feel as the main application, including the use
of service provider logos;

— the feedback has to be adaptable to the language of the user being identified, or where the system is
deployed.

In those cases, it is recommended in order to avoid re-programming the BSP or increasing the
complexity of the BSP, the interaction is handled by the application itself. As the feedback depends on
the specific step that the BSP is executing, and those steps are mostly controlled by the BSP (i.e. most
BSP functions are offered to the application as monolithic methods), then the way to solve this is by
using callback functions.

Callback functions shall be developed for each step where a BSP is required to either interact with, or
provide feedback to, a user. Naturally, the application shall provide a set of functions the BSP's callbacks
will map to, which the BSP will call within the context of the original method call.

Therefore, if the BSP allows the use of callback functions for handling the GUI, the following development
actions shall be taken, for each of the processes requiring such interaction (e.g. Capture).

— The application shall implement all GUI related functions for such process. These functions are of
the following kinds:

— Select Function: to show the interaction with the user at the beginning or the end of the whole
process.

EXAMPLE At the beginning the process, the following message may be provided: “Capture process for
theindex finger of the right hand”. And at the end of the process, the message to be given could be: “Acquisition
finished. Thank you!”. Therefore, the callback function shall know if it is being called at the beginning of the
process, or at the end. Also, the callback function can also provide the BSP with information about a user
action, such as cancelling the capture process. All this information flow is provided in parameters of the
callback function.

— State Function: Sometimes the BSP process may take several internal steps, which can be
designed as different states. Therefore, the state function will provide feedback depending on
whether a certain internal step is to be started or finished. This leads to the need for the State
Function to know which internal step is being processed, and that information will be provided
as parameters to the callback function. Also, feedback provided by the user will be passed to the
BSP by the parameters involved, such as cancelling the whole process.

— Progress Function: In some other cases, it may be necessary to provide the user with real time
feedback on the progression of the process.

EXAMPLE A system may be showing in the screen the live image of the fingerprint or face within the
acquisition process. In such case, a Progress callback function may be implemented to show the data stream.

© ISO/IEC 2016 - All rights reserved 5

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

— Once the callback functions have been implemented for the process, the application shall report
the BSP about the callback functions to be used, before calling the process. This will be done by
subscribing the BSP to those selected GUI events, and the relevant callback functions.

— Once subscribed, the application can call the process (e.g. Capture).

— Finally, when the process has been completed, the application can unsubscribe the BSP from the
previously subscribed events.

NOTE Further information can be found in ISO/IEC 19784-1.
5.4 Implementation guidelines

5.4.1 Basic concepts

A common scenario for BioAPIl's implementation is one where a framework is developed. A BioAPI
framework provides a further abstraction, on top of BSPs and BFPs, allowing an application developer
to use biometric components (BSPs or BFPs) without concern for their underlying implementation. In a
framework approach, it is the responsibility of the application developer to determine which functions
offered by BSPs or BFPs are available to an end-user.

In an Object Oriented BioAPI implementation, three developer roles are involved in the use of this
part of ISO/IEC 30106. The following points provide guidance on which clauses are applicable to each
developer role:

— Developers providing services (ie: BSPs or BFPs) for access by biometric applications, will find 5.4.2,
5.4.3 and 5.4.4 are applicable

— Framework developers involved with integrating the framework into a system and making BSPs
and BPFs accessible to such systems will find 5.4.5 applicable

— Application developers who directly use third party BSPs will find 5.4.6 is applicable to this group
of developers.

5.4.2 BioAPI_Unit development

BSPs and BFPs will implement BioAPI_Units. They shall be developed including all properties and
methods defined in this International Standard. If when implementing a certain BioAPI_Unit, the
developer does not want to provide a certain functionality, then, the following indications shall be
followed.

— For each of the methods, including the overloading of them, that are not to be supported, the method
shall be programmed and published, but containing only the throw of a BioAPIException indicating
that such function is not supported.

— Whatever public property is involved only in the non-supported functionality, its value shall be set
to NULL.

— The UnitSchema shall provide an accurate information on the functionality supported by the
BioAPI Unit.

It is necessary to remark that the implementation of BioAPI_Units is entirely proprietary and is strictly
supported and implemented by BioAPI_BSP developer.

5.4.3 BFP development

As it was mentioned in 5.1, a Biometric Function Provider (i.e. BFP), is a set of BioAPI_Units of the same
category (i.e. either archive, comparison, processing or sensor), that are provided for the BSPs, so that

6 © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

a BSP can use one of such BioAPI_Units, either by its own decision, or by request of the application. This
relationship is implemented in the following way:

a) The application loads the BSP by calling the BSPLoad method.

b) When executing the BSPLoad() method it is recommended the BSP determines which BSPs are
included in the Component Registry. The Component Registry also defines the set of BioAPI_Units
contained in each BSP. Probing for this information is achieved by calling the callback function
BFPEnumerationCallback(). Calling BFPEnumerationCallback() will result in the return of
BFPSchemas.

1) For every BioAPI_Unit the BSP reads its UnitSchema structure to discover whether the BioAPI_
Unit is compatible with the BSP and therefore a supported BioAPI_Unit.

2) The BSP retains an internal register of supported BioAPI_Units and the BFP to which each
belongs. The BSP also assigns a unique identifier, called UnitlD, to each supported BioAPI_Unit.

c) Afterloading the BSP the application may interrogate the BSP about the supported BioAPI_Units in
order to discover which BioAPI_Units are available. This is done be calling the QueryUnits() method.

d) The application shall be able to use any BioAPI_Unit of those offered by the BSP. The BioAPI_Unit can
be offered by two means (this is applicable to each of the four BioAPI_Unit categories, i.e. archive,
comparison, processing and sensor):

1) The BSP already contains the BioAPI_Unit to be used.

2) The BioAPI_Unit selected is not integrated in the BSP, but it is provided to the BSP by a
compatible BFP automatically linked by the BSP during its loading process.

e) Once the link between the BSP and all offered BioAPI_Units is stated, the application can use those
BioAPI_Units by calling each of the relevant methods, indicating the UnitlD selected.

In addition, the developer shall include also those methods needed for the installation, de-installation
and the dynamic instantiation of the available methods and properties. Also, the dynamic relationship
between BSPs and BioAPI_Units into BFPs shall be covered.

Finally, when developing a BFP, all indications about the support for the implementation BioAPI_Units
shall be followed (see 5.4.2).

5.4.4 BSP development

When developing a BSP, all methods defined for a BSP in this part of ISO/IEC 30106 shall be implemented,
including methods related to non-included BioAPI_Units. It may also happen that a BSP does not offer
detailed functionality for its BioAPI_Units and only provides the use of monolithic methods to the
application (e.g. due to security concerns). For these cases, the following rules shall apply.

— Unless the BSP does not want to publish the detailed functionality of a BioAPI_Unit, the BSP methods
that are related to BioAPI_Unit methods shall only contain the call to the method of the referenced
BioAPI_Unit, returning the value returned by such method.

— If amethod does not want to publish the detail functionality of one of its BioAPI_Units, then the non-
supported method shall throw a BioAPIException indicating the non-supported functionality. Also,
if there are properties related only to non-supported methods, its value shall be set to NULL. And
finally, the BSPSchema shall denote this lack of functionality.

— For those cases where the BSP is not going to support the selection of new BioAPI_Units from BFPs,
and that category of BioAPI_Unit is not included in the BSP, then, the relevant methods shall be
implemented throwing the BioAPIException indicating the lack of that functionality.

— Incase the BSP accepts the selection of new BioAPI_Units, and when loaded it discovers the existence
of supported BioAPI_Units that cover that functionality, the BSP shall update its BSPSchema in

© ISO/IEC 2016 - All rights reserved 7

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

order to notify that functionality, and shall have a rule to allow the selection of any of the available
BioAPI Units.

— If a certain method within the BSP requires the previous link between the BSP and a BFP BioAPI_
Unit, it shall be developed in a way that, if not BioAPI_Unit selection has been done, it throws the
function not supported BioAPIException, and if the BioAPI_Unit selection has already occurred, it
calls the selected BioAPI_Unit method forwarding the request from the application.

In addition, the developer shall include also those methods needed for the installation, de-installation
and the dynamic instantiation of the available methods and properties. Also, the dynamic relationship
between BSPs and BioAPI_Units into BFPs shall be covered.

5.4.5 Framework and component registry

The development of the framework is also related to the development of the component registry, which
shall be implemented in a way that a dynamic and non-volatile listing of the installed BSPs and BFPs is
stored. Also, the framework shall guarantee that an interoperable installation procedure is available
for the platform where it is being executed and that the application has all BSPs and BFPs discovery
mechanisms available.

5.4.6 Application development

An application developer shall be aware of the operations and options offered by the Framework,
as well as which BSPs and BioAPI_Units are available via the Framework. The application developer
shall ensure the application responds appropriately to exceptions raised by the Framework, whether
the exceptions indicate called functionality is not available or some other exception has occurred. It is
recommended, for simplicity of the application’s code, the application developer uses the highest level
methods available in the Bio API call stack (e.g. those in which all the biometric data is handled within
the BSP and not circulated through the application).

To assist the application developer in determining the features and functions provided by the
Framework, the following methods are available.

— Even before loading a BSP, the application can ask the Framework about which BSPs and BFPs are
installed, by calling the methods EnumBSPs() and EnumBFPs() respectively.

— Also, the application can obtain further information about the BFPs, by calling QueryBFPs() method.

6 BioAPI CBEFF Patron Formats

6.1 General

Object Oriented BioAPI is able to use biometric data coded as Self-Identifying BIRs, either Simple BIRs
or Complex BIRs, following the structure and definition of CBEFF (i.e. ISO/IEC 19785). Therefore, this

Clause describes both, the Simple BIR and the Complex BIR data structures in binary format.

This patron format may be expanded by using other type of coded, such as a Self-Identifying TLV coding,
as long as they are defined in the latest revision of ISO/IEC 19785-3.

6.2 Simple BIR

The data elements of a Simple BIR are provided in the following table. It is stated which elements from
those described in ISO/IEC 19785 are mandatory or not.

8 © ISO/IEC 2016 - All rights reserved

Table 2— CBEFF data elements of the patron format fora Simple BIR

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

CBEFF data element name Field name Length and |Abstract values and Encodingsh
optionalitya

The following fields shall

occur at most once
257)

CBEFF_BIR_self_id_type BirSelfldType 2, mandatory |1..65535 (for SC37 30106-x Simple: 9)
The complete length in bytes of the

4, mandatory #1ole BIR,including header and S&

’ (if applicable)

CBEFF_version cbeffVersion 1, mandatory |Major ‘3" and Minor ‘0": 0x000030

CBEFF_patron_header_patronHeaderVersion {1, mandatory {1

versi on

CBEFF_BDB_format_owner |bdbFormatOwner 2, mandatory |0..65535

CBEFF_BDB_format_type bdbFormatType 2, mandatory |0.65535

CBEEE BDR ton op- NO ENCRYPTION: 0

tions) o bdbEncryption 1; mandatory |ENCRYPTION: 1

CBEFE BIUintegrity option -birlntegrity 1 -mandatory —NOINTEGRITY: O INTEGRITY: 1

S

CBEFF_subheader_count numChildren 1, mandatory 0

© ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

Table 2 (continued)

CBEFF data element name Field name Lengthand |Abstract values and Encodingsb
optionalitya

not a standard CBEFF data fieldPresence 4, mandatory |A 32-bit field containing one bit for each

element optional field in the patron format. The

bit value ‘1’ means that the correspond-
ing field is present in the BIR instance.
Bit position (0=least significant,
31=least significant) and correspond-
ing optional field (those not defined yet
shall be set to ‘0'):

0. bdbBiometricType

1. bdbBiometricSubtype

2. bdbCaptureDeviceOwner and
Type

3. bdbFeatureExtractionAlgOwn-
er and Type

4, bdbComparisonAlgOwner and
Type

5. bdbCompressionAlgOwner
and Type

6. bdbPADTechniqueOwner and
Type

7. bdbChallengeResponse

8. bdbCreationDate

9. bdbIndex

10. bdbProcessedLevel
11. bdbProductOwner and Type

12. bdbPurpose

13. bdbQuality

14. bdbOwner and Type
15. bdbValidityPeriod

16. birCreationDate
17. birCreator

18. birIndex

19. birPayload

20. birPointer

21. birValidityPeriod

22. sbFormatOwner and Type

10 © ISO/IEC 2016 - All rights reserved

CBEFF_BDB_biometric_type

CBEFF data element name Field name

Table 2 [continued)
Lengthand |
optionalitya

bdbBiometricType 4

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

Abstract values and Encodingsh

This encoding is a 4 octet bitmap. NO

VALUE AVAILABLE is encoded as all 0
bits. If MULTIPLE BIOMETRIC TYPES is
set, other bits may also be set to enu-
merate the types contained in the BDB.
NO VALUE AVAILABLE: X'00 00 00°
MULTIPLE BIOMETRIC TYPES: X'00 00
01" FACE: X'00 00 02" VOICE: X’00 00
04’

FINGER: X'00 00 08" [RIS: X'00 00 10
RETINA: X'00 00 20 HAND GEOMETRY:
X'00 00 40" SIGNATURE OR SIGN: X'00
00 80" KEYSTROKE: X'00 01 00’ LIP
MOVEMENT: X'00 02 00" GAIT: X’00 10

00" VEIN: X'00 20 00" DNA: X'00 40

CBEFF_BDB_biometric_
subt ype

bdbBiometricSubtype

00" EAR: X'00 80 00’ FOOT: X'01 00 00’
SCENT: X'02 00 00°

This encoding is a 1 octet bitmap. Combi-
nations of abstract values are permitted
(by ORing the encodings for those values)
when the abstract value encoded in
CBEFF_BDB_biometric_type represents
a biometric technology that can create

a BDB where multiple subtypes are sup-
ported. NO VALUE AVAILABLE: b’0000
0000’ LEFT: b’0000 0001’ RIGHT:
b'0000 0010’ LEFT THUMB: b’0000
0101' LEFT INDEX FINGER: b’0000
1001’ LEFT MIDDLE FINGER: b'0001
0001’ LEFT RING FINGER: b’0010 0001’

LEFT LITTLE FINGER: b'0100 0001’
RIGHT THUMB: b’0000 0110° RIGHT
INDEX FINGER: b’0000 1010° RIGHT
MIDDLE FINGER: b’'0001 0010° RIGHT
RING FINGER: b’0010 0010" RIGHT LIT-
TLE FINGER: b’'0100 0010° LEFT PALM:
b'1000 0101" LEFT BACK OF HAND:

RIGHT PALM: B TO000T1T0 RIGHT
BACK OF HAND: b’'1000 1010’ RIGHT

b'1000 1001' LEFT WRIST: b'1001 0001’

CBEFF_BDB_capture_de-
vice_owner

bdbCaptureDevice-
Owner

0..65535, being 0 - NO VALUE AVAILA-
BLE

CBEFF_BDB_capture_de-
vice_type

bdbCaptureDeviceType

0..65535, being 0 - NO VALUE AVAILA-
BLE

CBEFF_BDB_feature_extrac-
tion_algorithm_owner

bdbFeatureExtraction-
AlgOwner

0..65535, being 0 - NO VALUE AVAILA-
BLE

CBEFF BDB feature extrac-

tion_algorithm_type

bdbFeatureExtraction-
AlgType

0..65535, being 0 - NO VALUE AVAILA-
BLE

CBEFF_BDB_comparison_al-
gorithm_owner

CBEFF_BDB_comparison_al-
gorithm_type
CBEFF_BDB_compression_

algorithm_owner

bdbComparisonAl-
g0wner

bdbComparisonAlgType

bdbCompressionAl-

gOwner

2

2

0..65535, being 0 - NO VALUE AVAILA-
BLE

0..65535, being 0 - NO VALUE AVAILA-
BLE

0..65535, being 0 - NO VALUE AVAILA-
BLE

© ISO/IEC 2016 - All rights reserved

11

BS ISO/IEC 30106-1:2016

ISO/IEC 30106-1:2016(E)

CBEFF data element name

Table 2 (continued)

rithm_owner

12

Field name Lengthand |Abstract values and Encodingsb
optionalitya
CBEFF_BDB_compression_ |bdbCompressionAlg- 2 0..65535, being 0 - NO VALUE AVAILA-
algorithm_type Type BLE
CBEFF_BDB_PAD_tech- bdbPADTechniqueOwn- |2 0..65535, being 0 - NO VALUE AVAILA-
nique_owner er BLE
CBEFF_BDB_PAD_tech- bdbPADTechniqueType |2 0..65535, being 0 - NO VALUE AVAILA-
nique_type BLE
CBEFF_BDB_challenge_res |bdbChallengeResponse |2 + 0..65535 Variable-length octet string, preceded
ponse by a 16-bit integer field containing the
length (octets).
CBEFF_BDB_creation_date |bdbCreationDate 7 The string shall represent a date (or
date and a time of the day).
Format is:
2 bytes for the year
1 byte for the month
1 byte for the day
1 byte for the hour
1 byte for the minute
1 byte for the second
All set to 0, or not present, means NO
VALUE AVAILABLE
CBEFF_BDB_index bdbIndex 2+ 0..65535 Variable-length octet string, preceded
by a 16-bit integer field containing the
length (octets). Shall not appear in any
{BIR in which numChildren is not x'00",
CBEFF_BDB_processed_level bdbProcessedLevel 1 RAW: 1
INTERMEDIATE: 2
PROCESSED: 3
Company that owns the BSP creating
the BIR
CBEFF_BDB_product_owner bdbProductOwner 2
0..65535, being 0 - NO VALUE AVAILA-
BLLE
CBEFF_BDB_product_type |bdbProductType 2 0..65535, being 0 - NO VALUE AVAILA-
BLE
CBEFF_BDB_purpose bdbPurpose 1 VERIFY: 1
IDENTIFY: 2
ENROLL: 3
ENROLL FOR VERIFICATION ONLY: 4
ENROLL FOR IDENTIFICATION ONLY: 5
AUDIT: 6
CBEFF_BDB_quality bdbQuality 1 QUALITY NOT SUPPORTED BY BDB
CREATOR: 255
QUALITY SUPPORTED BY BDB CREA-
TORBUT NOT SET: 254
INTEGER VALUE: 0 - 100
CBEFF BDB quality algo- bdbOwner 2 0..65535, being 0 - NO VALUE AVAILA-

BLE

© ISO/IEC 2016 - All rights reserved

CBLFF BDB quality algo-
rithm_type

CBEFF_BDB_validity_period

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-

1:2016(E)
Table 2 [continued)
Field name Length and [Abstract values and Encodingsh
optionalitya
hd_]:ﬂ:ypp 2 0 ﬁ'ﬁ'ﬁ?'ﬁrhpingﬂ—wﬂ VALUE AVAILA-
BLE
bdbValidityPeriod 14 The string shall represent an interval of

two dates (or date and time of the day).

CBEFF BIR creation_date

birCreationDate

Dn‘l-lﬂ. r]ﬂ'l—.r\.r- —) |
LU Llalios o I

bdbCreationDate.

The string shall represent a date (or
date and a time of the day).

Formatis:

2 bytes for the year

1 byte for the month
1 byte for the day

1 byte for the hour

1 byte for the minute
1 byte for the second

CBEFF_BIR_creator

birCreator

2+ 0..65535

Allsetto 0, or not present, means NO——

VALUE AVAILABLE

Variable-length ISO/IEC 10646
character string, encoded in UTF-8,
and preceded by a 16-bit integer field

CBEFF_BIR_index

birIndex

2 +0..65535

containing the length of the UTF-8
encoding (octets).

Variable-length octet string, preceded
by a 16-bit integer field containing the

CBEFF_BIR_payload

birPayload

2+ 0..65535

length (octets). Shall not inherit its
value from any other level BIR.

Variable-length octet string, preceded
by a 16-bit integer field containing the

CBEFF_BIR_pointer

birPointer

2 +0..65535

length (octets). Shall not inherit its
value from any other level BIR.

Variable-length octet string, preceded
by a 16-bit integer field containing the

CBEFF_BIR_validity_period

birValidityPeriod

14

length (octets). Provide the pointer (path.
or registry ID) to the following BIR

to be addressed in a multibir schema.

The string shall represent an interval of
two dates (or date and time of the day).

Both dates are coded in 7 bytes, as the

CBEFF SB format owner

sbFormatOwner

2, conditional

bdbCreationDate.
1..65535

© ISO/IEC 2016 - All rights reserved

13

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

Table 2 (continued)

CBEFF data element name |Field name Length and Abstract values and Encodingsb

| _ optionalitya

CBEFF SB format type sbFormatType 2 , conditional |1..65535

BDB bdb 4+ Variable-length octet string, preceded

0..4294967295 |by a 32-bit integer field containing the
length (octets). If this field is present
in a BIR instance (as indicated in bit 19
of the field fieldPresence), then no child
BIRs shall be included (numChildren
shall have the value 0). Otherwise, at
least one child BIR shall be included
(numChildren shall have a value great-
er than 0). NOTE - The content and
encoding of the BDB are not specified
by CBEFF nor by this patron format
specification.

SB sh 4 + Variable-length octet string, preceded
0..4294967295, |by a 32-bit integer field containing the

conditional length (octets).

6.3 Complex BIR

6.3.1 Structure

The structure of a Complex BIR is as described in ISO/IEC 19785, where the BIR is composed by a
hierarchy of Parent BIRs, which enclose a number or Child BIRs. This Clause defines both, the data
structure of the Child BIRs and the data structure of each of the Parent BIRs.

6.3.2 Child BIR

The data structure of the Child BIR shall follow the same specification of that of the Simple BIR
previously defined in this part of [ISO/IEC 30106.

6.3.3 Parent BIR

For each of the Parent BIRs the CBEFF patron format shall follow the specification provided in the
following table.

Table 3 — CBEFF data elements of the patron format for a Complex BIR

CBEFF data element name Field name Length and Abstract values and Encodingsb
‘optionalitya

The following fields shall

CBEFF_BIR_self_id_owner BirSelfldOwner 2, mandatory [1..65535 (for SC37 30106-x Simple:
257)
The complete length in bytes of the

zzi;;?mng:;d COREE BIRLength 4, mandatory et S L L 6) e G L

- (if applicable)

CBEFF_patron_header_ patronHeaderVersion |1, mandatory |1

versi on -

CBEFF_BIR_integrity_option |birintegrity 1, mandatory |NO INTEGRITY: O INTEGRITY: 1

=t

14 © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-

not a standard CBEFF data
element

fieldPresence

4, mandatory

1:2016(E)
Table 3 [continued)
CBEFF data element name Field name Length and [Abstract values and Encodingsh
optionalitya
CBEFF _subheader_ count numChildren 1, mandatory |1..255

A 32-bit field containing one bit for each
optional field in the patron format. The
bit value ‘1" means that the correspond-
ing field is present in the BIR instance.
Bit position (0O=least significant,
31=least significant) and correspond-
ing optional field (those not defined yet
shall be set to ‘0'):

0. bdbBiometricType

1. bdbBiometricSubtype

2. bdbCaptureDeviceOwner and
Type

3. bdbFeatureExtractionAlgOwn-
er and Type

27. bdbComparisonAlgOwner and
Type

28. bdbCompressionAlgOwner
and Type

29. bdbPADTechniqueOwner and
Type

30. bdbChallengeResponse

31. bdbCreationDate

32. bdbIndex

33. bdbProcessedLevel

34, bdbProductOwner and Type
35. bdbPurpose

36. bdbQuality

37. bdbOwner and Type
38. bdbValidityPeriod

39. birCreationDate
40, birCreator

41. birlndex

42. birPayload

© ISO/IEC 2016 - All rights reserved

43. birPointer
44, birValidityPeriod
45. sbFormatOwner and Type

15

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

Table 3 (continued)

CBEFF data element name Field name Lengthand |Abstract values and Encodingsb
optionalitya
CBEFF_BIR _creation_date birCreationDate 7 The string shall represent a date (or

date and a time of the day).
Format is:

2 bytes for the year

1 byte for the month

1 byte for the day

1 byte for the hour

1 byte for the minute

1 byte for the second

All set to 0, or not present, means NO
VALUE AVAILABLE

CBEFF_BIR_creator birCreator 2+ 0.65535 Variable-length ISO/IEC 10646
character string, encoded in UTF-8,
and preceded by a 16-bit integer field
containing the length of the UTF-8

Enr‘nr‘inn‘ [Aartetc)

Il‘-‘v“lllb LU"-"‘-'—-“-UJ!

CBEFF_BIR_index birIndex 2+ 0..65535 Variable-length octet string, preceded
by a 16-bit integer field containing the
length (octets). Shall not inherit its

value fromany other level BIR:
CBEFF_BIR_payload birPayload 2+ 0..65535 Variable-length octet string, preceded

by a 16-bit integer field containing the
length (octets). Shall not inherit its

value from any other level BIR.

CBEFF_BIR_validity_period | birValidityPeriod 1+17.31 Variable-length ASCII character string,
preceded by an 8-bit integer field
containing the length (characters). The
string shall represent an interval of two

dates (or date and time of the day)d.

CBEFF_SB_format_owner sbFormatOwner 2, conditional [1..65535
CBEFF_SB_format_type sbFormatType 2, conditional |1..65535
BDB bdb 4 + Variable-length octet string, preceded

0..4294967295 |by a 32-bit integer field containing the
length (octets). If this field is present
in a BIR instance (as indicated in bit 19
of the field fieldPresence), then no child
BIRs shall be included (numChildren
shall have the value 0). Otherwise, at
least one child BIR shall be included
(numChildren shall have a value great-
er than 0). NOTE - The content and
encoding of the BDB are not specified
by CBEFF nor by this patron format

specification.

The following 3 fields shall

occur as a group as many
times as specified in the field

numChildren (0.255)

16 © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-

1:2016(E)
Table 3 [continued)
CBEFF data element name Field name Lengthand [Abstract values and Encodingsb
optionalitya
not a standard CBEFF childBir 0.4294967295 |Coded as a simple BIR (child BIR)
data element , mandatory
The following field shall
occur at most once
SB sb 4 + Variable-length octet string, preceded
04294967295 |by a 32-bit integer field containing the

length (octets).

7 Constants

7.1 General

For the use of this part of ISO/IEC 30106 in its different parts, the following constants apply, which are
grouped by expected use.

7.2 Biometric types

— int NoValueAvailableValue = 0x000000;
— int MultipleBiometricTypesValue = 0x000001;
— int FaceValue = 0x000002;

— int VoiceValue = 0x000004;

— int FingerValue = 0x000008;

— int IrisValue = 0x000010:

— int RetinaValue = 0x000020;

— int HandGeometryValue = 0x000040;
— int SignatureOrSignValue = 0x000080;
— int KeystrokeValue = 0x000100;

— int LipMovementValue = 0x000200;

— int GaitValue = 0x001000;

— int VeinValue = 0x002000;

— int DNAValue = 0x004000;

— int EarValue = 0x008000;

— int FootValue = 0x010000;

— int ScentValue = 0x020000:;

7.3 Biometric subtypes
— Dbyte NoValueAvailableValue = 0x00; // b’0000 0000’
— byte LeftValue = 0x01; // b’0000 0001°

© ISO/IEC 2016 - All rights reserved 17

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

— byte RightValue = 0x02; // b’0000 0010’

— byte LeftThumbValue = 0x05; // b’0000 0101’

— byte LeftIndexFingerValue = 0x09; // b’0000 1001’
— byte LeftMiddleFingerValue = 0x11; // b’0001 0001’
— byte LeftRingFingerValue = 0x21; // b’'0010 0001’

— byte LeftLittleFingerValue = 0x41; // b’0100 0001"
— byte RightThumbValue = 0x06; // b’0000 0110’

— byte RightlndexFingerValue = 0x04; // b’0000 1010’
— byte RightMiddleFingerValue = 0x12; // b’0001 0010’
— byte RightRingFingerValue = 0x22; // b’0010 0010’
— byte RightLittleFingerValue = 0x42; // b’0100 0010’
— byte LeftPalmValue = 0x85; // b’1000 0101

— byte LeftBackOfHandValue = 0x89; // b'1000 1001’
— byte LeftWristValue = 0x91; // b’1001 0001’

— byte RightPalmValue = 0x86; // b'1000 0110’

— byte RightBackOfHandValue = 0x8A; // b'1000 1010
— byte RightWristValue = 0x92; // b’'1001 0010’

7.4 Error codes

The following table shows the error codes defined, where the error code is composed by the OR
operation of one of the three error codes (i.e. the one stating the originator of the error) and the specific
error found. Therefore, in an error value returned is 0x00000000 means no error occurred.

Table 4 — Error codes for Object oriented BioAPI

public const int BioAPIFrameworkError 0x0000000p
public const int BioAPIBSPError 0x01000000
public const int BioAPIUnitError 0x0200000(
public const int BioAPIErrinternalError 0x000101
public const int BioAPIErrMemoryError 0x000102
public const int BioAPIErrinvalidPointer 0x000103
public const int BioAPIErrinvalidinputPointer 0x000104

public const int BioAPIErrinvalidOutputPointer 0x000105

public const int BioAPIErrFunctionNotSupported 0x000106
public const int BioAPIErrOSAccessDenied 0x000107
public const int BioAPI|ErrFunctionFailed 0x000108
public const int BioAPIErrinvalidUUID 0x000109
public const int BioAPIErrincompatibleVersion 0x00010a

public const int BioAPIErrinvalidData 0x00010b
public const int BioAPIErrUnableToCapture 0x00010c
public const int BioAPIErrTooManyHandles 0x00010a

18 © ISO/IEC 2016 - All rights reserved

Table 4 (continued)

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-

1:2016(E)

public-constHnt-BioARIErrHmeoutExpired
=L R

LA LT

public const int BioAPIErrinvalidBIR 0x00010f
public const int BioAPIErBIRSignatureFailure 0x000110
public const int BioAPIErrUnableToStorePayload 0x000111
public const int BioAPIErrNolnputBIRs 0x000112
public const int BioAPIErrUnsupportedFormat 0x000113
public const int BioAPIErrUnableTolmport 0x000114
public const int BioAPIErrinconsistentPurpose 0x000115
public const int BioAPIErrBIRNotFullyProcessed 0x000116
public const int BioAPIErrPurposeNotSupported 0x000117
public const int BioAPIErrUserCancelled 0x000118
public const int BioAPIErrUnitinUse 0x000119
public const int BIOAPIErrinvalidBsPHandle 0x00011a
public const int BioAPIErrFrameworkNotinitialized Ox00011b
public const Int BIOAFIErrinvalidbirkHandle 0x00011c
public const int BioOAPTErCalibrationNotsSuccessiul Ox000T11d
‘public const int BioAPTEmMPTresetiBIRDoesNotEXist OxX000T1Te
public constint BioAPIErrDecryptionFailure Ox00011f
public constint BioAPtEmdentifylnProgress OX000120
public constint BioAPIErrLowQuatityReference Template 0x000121
publicconstint BroAPtEmMNoGUIEventHandter Ox000122
publicconstint BroAPtEmr TransformationNotSupported Ox000123
public-constint BioAPIErrComponentAireadyRegistered 0x000125
public-constint BioAPHErr€omponentiNotRegistered Ox000126
ptblic-constint BioAPErrAlgorithmiNotStpported Ox000127
public-constint BioAPErrEncodingError 0x000128
public-constint BioAPIErrDecodingEerror 0000129

o
Lo
=
o
(WIEY
[y

Fai
o

L AL e B

public constint BioARIErrSecurityBlockError 0x00012¢
public const int BioAPIErrDataNotFreed 0x00012d
public constint BiocAPIErrDataCreationError 0x00012e
_pubﬂc_cansi_im_ﬁia&ELELdNrnngHinm::ﬂrirzlnqtﬂnnpqﬁpmmpd Qx00012f
public const int BioAP|ErrComponentFileRefNotFound 0x000201
_pub_lj_c_cnn::i int BicAPIErrBSPLoadFail 0x000202
public const int BioAPIErrBSPNotl oaded 0x000203
public const int BioAPIErrUnitNotinserted 0x000204
public const int BioAPIErrinvalidUnitID 0x000205
public const int BioAPIErrinvalidCategory 0x000206
public const int BioAPIErrinvalidDBHandle 0x000300
public const int BioAPIErrUnableToOpenDatabase 0x000301
public const int BioAPI|ErrDatabaselsLocked 0x000302
public const int BioAPIErrDatabaseDoesNotExist 0x000303

© ISO/IEC 2016 - All rights reserved

19

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

Table 4 (continued)
public const int BioAPIErrDatabaseAlreadyExists 0x000304
public const int BioAPIErrinvalidDatabaseName 0x000305
public const int BioAPIErrRecordNotFound 0x000306
public const int BioAPIErrMarkerHandlelsInvalid 0x000307
public const int BioAPI|ErrDatabaselsOpen 0x000308
public const int BioAPIErrinvalidAccessRequest 0x000309
public const int BioAPIErrEndOfDatabase 0x00030a
public const int BioAP|ErrUnableToCreateDatabase 0x00030b
public const int BioAPIErrUnableToCloseDatabase 0x00030c
public const int BioAPIErrUnableToDeleteDatabase 0x00030d
public const int BioAPIErrDatabaselsCorrupt 0x00030e
public cons tint BioAPIErrQueryExecutionFailed 0x00030f
public const int BioAPIErrLocationError 0x000400
public const int BioAPIErrOutOfFrame 0x000401
public const int BioAPIErrinvalidCrosswisePosition 0x000402
public const int BioAPIErrinvalidLengthwisePosition 0x000403
public const int BioAPIErrinvalidDistance 0x000404
public const int BioAPIErrLocationTooRight Ux000405
public const int BioAPIErrLocationToolLeft Ux000406
‘public const int BioAPIErrLocation TooHIgh 0x000407
public const int BioAPIErrLocationTooLow 0x000408
public constint BioAPIErTCocation ToorFar 0x000409
pubtic constint BioAPIErrCocationTooNear Ox00040a
pubtic constint BioAPIErrLocationTooForward 0x00040b
publicconstint BioAPtErtocationTooBackward Ox000640T
pubticconstint BioAPHErrQuatityErron 0
publicconstint BioAPtErrTookarty Ox0600502
pubticconstint BioAPtErrfootate Ox666563
public const int BioAPIErrTooFast 0x000504
public-constint BioAPIErrfooSiow Ox0005065
pblie-constntBioARIErrToetong Bx066566
public const int BioAPIErTooShort 0x000507
pubhc const int BoAPleErrToolarge ol B T b
public const int BioAPIErrTooSmall 0x000509
public-const int BioAPIErrSecurityProfileNotSet 0x000601
public_const int BioAPIErrSecurityEncryptionAlghNotSupported 0x000610
public const int BioAPIErrSecurityEncryptionAlgNotSet 0x000611
public const int BioAPIErrSecurityEnckeyNotSet 0x000612
public const int BioAPIErrSecurityEncryptionFailure 0x000614
public const int BioAPIErrSecurityDecryptionFailure 0x000618
public const int BioAPIErrSecurityMACAIgNotSupported 0x000620
public const int BioAPIErrSecurityMACAIgNotSet 0x000621
public const int BioAPIErrSecurityMACkeyNotSet 0x000622

20

© ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-

1:2016(E)
Table 4 (continued)

public const int BioAPIErrSecurityMACGenerationFailure 0x000624
public const int BioAPIErrSecurityMACVerificationFailure 0x000628
public const int BioAPIErrSecurityDigitalSignatureAlgNotSupported 0x000640
public const int BioAPIErrSecurityDigitalSignatureAlgNotSet 0x000641
public const int BioAPI|ErrSecurityDigitalSignatureGenerationFailure 0x00064 4
hublic const int BioAP acurityDigitalSignatureVerificationFailure 0x000648
public const int BioAPIErrSecurityChallengeNotSet 0x000701
public const int BioAPIErrSecurityBPUIOIndexNotSet 0x000702
public const int BioAPIErrSecuritySupremumBPUIOIndexNotSet 0x000704
public const int BioAPIErrSecurityMACAIgACBioNotSupported 0x000720
public const int BioAPIErmrSecurityMACAIgACBIoNotSet 0x000721
public const int BioAPIErrSecurityMACkeyACBioNotSet 0x000722
public const int BioAP|ErrSecurityDigitalSignatureAlgACBioNot-
Supported 04000740

i nst int BioAPIEr rityDigitalSignature AlgACBioN 0x000741
public const int BioAPIErrSecurityHashAlgACBioNotSupported 0x000780
pubtic tonstint BioAPIEmrSecurityHashAlgACBioNotSet Ox000781
pubticconstint BioAPtEmrTestVerifyFaited Ox000800
public const int BioAPIErrRawSamplelnsufficientQuality 0x000900
public const int BioAPIErrProcessedSamplelnsufficientQuality 0x000901
public const int BioAPIErrEnrolmentNotCompleted 0x000902
public const int BioAPIErrPresentationAttackDetected 0x000903
public const int BioAPIErrBIRNotFound 0x000904
public const int BioAPIErrStorageNotAvailable 0x000905
public const int BioAPIErrSampleNotldentified 0x000906
public const int BioAPIErrUnitNotAvailable 0x000907

8 00 BioAPI UML structure

8.1 General

The BioAPI Object Oriented interface will be divided into two basic blocks.

— Block BioAPI: Contains functionality to manage units, BSPs, BFPs, the Framework and Applications.
— Block BioAPI-Data: Contains all the data structures.

NOTE The following parts could (but it is not mandatory) have additional blocks depending on the language
implementation or in order to facilitate implementers build applications or BSPs (i.e. Template package).

The UML structure is going to be shown in the following subclauses, starting with the relationships
among data structures (i.e. BioAPI-Data) and after that the BioAPI_Unit level will be provided, followed
by the BFP and BSP levels, to end up with the Framework and the Application levels.

© ISO/IEC 2016 - All rights reserved 21

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

8.2 Relationships among data structures

8.2.1 Class BIR

class BIR

ReqgistrylD PatronFormat SelflD
byte CBEFFVersion

byte PatronHeaderVersion
RegisirylD BDEFormat

bool BDBENCripon

bool BDEIntegrity BIRIntegrity
BiometricType BEDBBiometncType
Biometricsubtype BDEBiomeiricSublype
RegistrylD BDBC apiureDevice
RegistrylD BDBFealureExtraconAlg
RegistrylD» BDBCompansonAlg
RegistrylD» BDBCompresionAlg
Fegistryll BDBPADTechnique
byte(] BDBChallengeResponse
Date BDBC reaonDate

bytel] BDEIndex

FrocessedLevel BDEProcessedLevel
RegistrylD BOBProduct

Purpose BDBPurpose

byte BDBQuality

Registryll BDBQualityAlg
List<Date> BODBYalidityPeriod
Date BIRCreaonDate

byta[] BIRCreator

byte[] BIRIndex

byte[] BIRPayload

byte[] BIRPointer

List=Date> BIRValidityPeriod
RegisirylD SEFomat

byte[] BEOBData

virtual BIF (byte]] record)

virtual BIR. (RegistrylD bDBFormat, bool
bDBERcription, bool bIRIntegrity,
BiometricType bDBBiometricType,
BiometricSubtype bDEBiomefricSubtype,
RegistrylD bDBCaptureDevice, RegistrylD
bDBFeatureExtractionalg, RegistrylD
bDBComparisonalg, RegistrylD
bDBCompresionAlg, RegistrylD
bDBPADTechnique, byte[]
bDBChallengeResponse, Date
bDBCreationDate, byta{] bDEIndax,
ProcessedLevel bDBProcessedLavel,
RegistrylD bDBProeduct, Purpose
bDBPurpose, byte bDBQuality, RegistrylD
bOBQualityalg, List<Date>
bDBValidityPeriod, Date bIRCraationData,
byte(] bIRCreator, byte[] bIRIndex, byte(]
bIRPayload, byta{] bIRPainter, List=Data=
bIRValidityPeariod, RegistrylD sBFormat,
byte(] bDBData, byte[] sBData)

virtual byte[] ToArray ()

virtual void Dispoze ()

<<Enumeraon>>
Biometric [ype
numeraon=>

metricsubtype

Valuefwvailable

Le Thumb

Le IndexFinger
Le MiddleFinger
Le RingFinger

Le LileFingar
RightThumb
RightindexFinger
RightMiddieFinger
RightRingFinger ,
RightLileFinger intermediabs
Le Palm Processed
Le BackOfHand AL
Le Wrisi
RightPalm
RightBackOfHand
RightWrist
<< Enumerann=m»
Purpose
Verify
MoValuefvailable Identy
Enral
. . EnrolForVenficaonlnky
E:EEBIMENETFPEE EnrqIFﬂrIdenﬁcacinnDnhf
Finger Deacide .
Iris NoFurposefvailable
Fena
HandGeometry
SignatureOr3ign
Keysiroke
LipMovement
Gaif
Vein
DMA
Ear
Foot
Scent
short Owner
short Type

intDayOfonth

int Month

int Year

int Hour

int Minute

intSecond
boollsLowerOrEqual{intDay,intMonth,intYear)
bool IsLowerOrEqual (int Day, int Month, int Year,
int Hour, int Minute, int Second)
boollsLowerQrEqual{iDateDate)
boollsHigherOrEqual{intDay . intMonth,intYear)
boal IsHigherOrEqual (int Day, int Month, int Year,
int Howr, int Minute, int Second)
boollsHigherOrEquall | DateDate)

Figure 2 — UML diagram for class BIR

p s

© ISO/IEC 2016 - All rights reserved

8.2.2

<<Enumeraon==

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

Archive (0x00000001) UUID BSPUUID
Comparison (0x00000002) UUID UnitManagerUuid
Processing (0x00000004) int UnitlD
—Sensor{0x00600608) UnitCategoryType UnitCategory
QualityAssessment (0x00000010) UUID UnitProperes
<> String Vendorinformaon =

List<EventKind> SupportedEvents

UUID UnitPropertylD

byte[] UnitProperty

string HardwareVersion

string FirmwareVersion

string So wareVersion

string HardwareSerialNumber

bool AuthencatedHardware

int MaxBSPDbSize
I

L ety e

Adaptaon (0x00000800)
AppGUI (0x00000010) <>
AchiveBFP (0x00020000)
Binning (0x00001000)

BirEncrypt (0x00000200)
BirSign (Ox00000100)

Capturemmme {[}x[}ﬂ.ﬂ,ﬂjﬂ[}ﬂ[}] 'byie'[]"EJG‘NMg“ N ——

List<SecurityOponsType=>
SupportedSecurityOpons
byte[] ENCInfo
byte[] MACInfo

CoarseScores (0x00100000)

(P
18]
O

Insert (Ox00000001)
Remove (0x00000002)
Fault (0x00000004)

—SourceFresent

(0x00000008)
SourceRemoved
10)

ComparisonBFP (0x00040000)
GUIProgressEvents (0x00000020)
Idenfylndicator (0x00200000)
OCC (0x00004000)

Payload (Ox00000080)
ProcessingBFP (0x00080000)
ProcessMulple (0x00800000)
Qualitylntermediate (0x00000004)
QualityProcessed (0x00000008)
QualityRaw (0x00000002)

byte[] HASHAIgForACB
byte[] MACInfoForACBi

Raw (0x00000001)
SelfContainedDevice (0x00002000)

SensorBFP (0x000710000) Sstsyeie R UL AL LI

SourcePresent (0x00000040) MAC (0x00000002)

SubtypeToCapture (0x00008000) DigitalSignature (0x00000004)
TemplateUpdate (0x00000400) ACBioGeneraonWithMAC (0x00000010)

ACBioGeneraonWithDigitalSignature
(0x00000020)

Figure 3 — UML diagram for class UnitSchema

© ISO/IEC 2016 - All rights reserved

23

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

8.2.3 C(lass BFPSchema

<<Enumeraon>=>

T . <<Enumeraon>>
Class BFP5chema [Serializable()]

UnitCategoryType

BiometricType

UuiD BFRPUUID

(see above) UnitCategoryType BFPCategory (see above)
String BFPDescripon
String Path

<> String SpecVersion K>
String ProductVersion

= D) [Senalizable String Vendor -

sbyte[] BFPProperty

List<RegistrylD> BFPSupportedFormats

List<BiometricType> FactorsMask

UUID FwPropertylD

Ghytell EwPraperty . e

_|seeabove) .

(see above)

Figure 4 — UML diagram for class BFPSchema

8.2.4 C(lass BSPSchema

<<Enumeracon=> _ _ o -~
iss BSPSchema [Serializable()]

BSPSchemaOpons
{ S UPID BSPUUID |
EE—— String BSPDescription
Sking Path CalibrateSensor 0x00020000)
Sking Spec\Version Capture {0x00000004)
S¥ing ProductVersion CheckQuality (0x00080000)
Sking Vendor CreateTemplate [0x00000008)
SRR e Libt<RegistrylD> BSPSupportedFarmats CreateTgmplateVithAuxEIR

(0x00000020)

List<BiometricType> FactorsMask
it<BiometricType> FactorsMas EnableEyents (0k00000001)

L?t{EEPSGhemaGpe.ratinnsr Qperatinna Enrol (0xp00001P0)
T _ S y Idenfy (0x00000080)
BiometricType inf MaxAdditionalDataSize IdenfyAggregate|(0x00000400)
it DefaultVerityTimeaut PresetidgnfyPopfilaon (0x00001000)
i Defaultldentify Timeout Process Ugﬂﬂﬂ.uﬂ{]"l[}]
inf DefaultCapture Timeout ProcessWithAuxBIR (0x01000000)
int DefaulEnrol Timeout QueryBFPs (0x00200000)
inf DefaultCalibrateTimeout QueryUnits (Ox0
inf MaxBSPDbSize Security (0x10000000)
in| Maxldentify SetindicgtorStatys (0x00008000)
—isee.abovel....... ... it MaxMumEnrollnstances EetF'uwaMn-de
byte[] HostingEndpointi R Verily (0200000040
UPID BSPAccessUUID VerifyAggregates-4 3
List<RegistrylD>= BSPSupportedAlgorithms VerifyWithAuxBIR (0x02000000
List="UuUID=

BSPSupportedTransformOperations

Figure 5 — UML diagram for class BSPSchema

24 © ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

UUID FrameworkUUID
String FwDescripon
String Path

String SpecVersion
String ProductVersion
String Vendor

byte[] FwProperty

(see above)

Figure 6 — UML diagram for class FrameworkSchema

8.3 BioAPI Unit structures

8.3.1

<<|nterface>>

UnitSchema unitSchema List<PopulaonMember> Populaonldenfied
void CloseDatabase (int unitiDy) virtual void AddMember (PopulaonMember
void DeleteBIR (int unitiD, UUID key) = | member)

BIR GetSingleBIR (int unitiD, UUID key) virtual void Dispose ()

List<UUID= ListUUIDs (int unitiD) virtual bool IsBound ()

|denfypopulaon MewldenfyPopulaon (int unitlD)

ldenfyPopulaon NewldenfyPopulaon (int unitlD, List<UUID= UUIDList)
IdenfyPopulaon NewldenfyPopulaon (int unitlD, byte[] query)

voild OpenDatabase (int unitlD, byte[] database|D, BIRDatabaseAccess accesg)
UUID StoreBIR (int unitlD, BIR biometricReference)

void StoreBIR (int unitlD, BIR biometricReference, UUID key)
UUID StoreBIR (int unitlD 21
void StopreBHR-fmtonte-

ata)

OUTD Rey
BIR Template

<<=Enumeraon==

(seeabove)

Read
ReadWrite
Write

(see above)
(see above)

Figure 7 — UML diagram for [Archive

© ISO/IEC 2016 - All rights reserved

25

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

8.3.2 IComparison

<<|nterface>>

IComparison

LHnitSchema unitSchema
BIR GetAdaptedBIR (int
unitiD) int GetFMRAchieved
(int unitiD)
List<ICandidate> |denfy (int unitiD, int maxFMRrequested, BIR processedBIR, bool binning, int maxResults, int meout)
List<|Candidate= |ldenfy (int unitlD, int maxFMRrequested, BIR processedBIR, List<BIR> auxiliaryBIRs, bool binning, int maxResults, inf meout)
void PresetldenfyPopulaon (int unitlD, ldenfypopulaon populaon)

slele - [L. Al maxEvEreaquestiad. BlE oproce sAHEE BIE reference | emplale <H e LIDONS=> ORON

bool Verify (int unitlD , int maxFMRrequested, BIR pracessedBlH.lF& referenceTemplate, List<BIR> auxiliaryBIRs, List<ResultOpons> opons)

(see above) (see above) RequestAdaptedBIR : SE TNl B - T — (see
(see above) RequestAddionalData int FMRAchieved | above)

(528
above)

Figure 8 — UML diagram for IComparison

8.3.3

UnitSchema unitSchema

1 | b sate Teamnlate (in athd NI =11= Ta aABIE BRI refarance Temnlate B aai hiNa) aldaals e wrldinnalDats
BIR CreateTemplate (int unitlD, List<BIR=> capturedBIRs, BIR =¢’- renceTemplate, RegistrylD outputFormat, byte[] addionalData, int unitlD)
BIR Process (int unitlD , BIR capturedBIR, RegistrylD outputFormat)

BIR Process (int unitlD, BIR gapluredBIR, List<BIR=> auxiliaryBIRs, RegistrylD outpulFormat)

S O I R O S

(see above) (see above) (see
above)

(see
above)

Figure 9 — UML diagram for IProcessing

26

© ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

LintSchema unitSchema
L_void Calibrate (int unitlD) _int meout)

8.3.4
f <<|nterface==

BIR Capture (int unitll} , List=Purpose> purpose, BiometncSubty
CpOns)
UnitindicatorStatus GetlndicatorStatus (int unitlD)

VoI Setme [:
[Gae |

'Eme{mci (see above) (see above) (see above)
Rolled (see above)

Figure 10 — UML diagram for ISensor

<= |BFPSchema BFPSchema e ——
It A GO AR ettt s et e e
avant BFPEventCallback BFFEvent '

avant BFPGUIProgressCallback BFPGUICallback

void BFPLoad (BFPEventCallback bfpMNofyCallback)

void BFPUnload ()

Insert (Ox00000001) byte[] ControlUnit (int unitiD, int controlCode, byte[] inputData)

byte[] GetduxiliaryData (int unitig

List<UnitSchema> Querylnits (]

List=UnitSchema> QueryUnits (§ist<UnitCategoryType= unitCategories)
votd-SetPower tint-unitt - UnitPoweriMode powerhMode

Detect

Mormal s s — s e

lesh (see abova) (sea abovea) (see abova) (sea above)
(see above) (sea above) (see above) (see above)

Accept

Busy

subtype, RegistrylD outputFormat, int meout, List=ResultOpons=

Failure
Raady
Raject

(see above)

Only one of these Unit interfaces although it can be repeated as many mes as units included in the BFP

Figurell — UML diagram for the BFP structure

© ISO/IEC 2016 - All rights reserved

27

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

8.5 BSP Structure

IBSP

IBEFSchema B5SPEchemsa
sryial] ACH O Falance

oeanl B5F EvenlCalloack BEFE Rk

wiod BSFLoad (BSFEwertCalback

sspholyCalback) void BFFUrioad ()

brvbe Ttk Quality (BIR ingutBIR, Regising D

gualityBlganthmiD] Byta[] Contrallnit {int unZiD, it

coniriCods, Eylal] inpuiDala)

LD Erwil {LniLial unilisl, BIR iapbhorad BIR, BIR eferansaTamplabs, Ligl<Pupess puipoess, BiormsiricSublyps subiype, RagisirdD ouignlF

LD Enncl {LivilL L unillil, List<8IR> capluradEIRE, BIR ralanerca Tamplata, Lisl<Purgca s> purpodas, Biomalniciubypa sublyps, Regain D culpuiFarmal, byte]] addicnalData, Lal<ReEaulDpena> opena)
———aw LN Enrcl (UL uniiLil, 00 nomban2MPresaniaan, inl rosrSenDM&la, BIR ralarancaTamplads, LEPUDoEas pungas, Biame

UG Enngd (UvetList uniiList, BIR capluredBIR, WD referencelD, List<Purpose> purpose. BlomelncSublype subtype. RegisiylD outputFormal, byie]] addicralData, List<ResultiOpons> apons)

UG Enngd (UretList uniiList, List<Bif> captursdBiRs. UUID refersnceil, List<Purposss purposs, BiometncSobiype subbyps, RegsiryiD cotputFormat, byisl] addionsi0ata. Lisi<Resubdpons= opons)

LILWE Envl (Uil st nill e, inl n

bytal] Gatfupslinn Dl (nl unill)

LI Cardid ala [dendyAgaragaied (UnilLal unilist, i maFMRRguasied, BomalneSubtypa sublypa, boaol hisming, i maxResudis, ol meou, Ugl<ReguROpons> opens)

Lel<ICardidala> dandyAggragaied (UnilLal unilis!, EIR ngutBI R, nl snaxFWRraquaiied, BiomalicSubiypa sublyge, Dol binsing, inl saeRasuls, inl maoul, LERaullDpons opord)

List<8F FLisiElement= Query@FPs ()

LslcBEFFLISElament> DusryEFFS |ListcUnBCatenonyTymer

unbCabenorkes) LisicUniiSchama= CuergUnis |1

List:UritSchamas QuaryUnits [ListcUnRCategony TYDES UnBCategorkes)

bogl WVari fyfgpgragalad (UL st wilLisd, inl maxFRRraquaiied, BIR ralirercaTemplala, BomsreSublyps subtypa, inl maoul, LERaEulDpong> opond)

Bool VerifyAganegabad {UnitLal unilisl, i maFMRmguasiad, BIR npuBIR, BIR mlaneica Tamglale, BomslricSublypss Sublypa, 0 mieddl, LEl<ReEullOpens cpena)

kool VerityAggregabed {UniList unilist, it masFMRreguesied, UUID referenteiay, BomaticSubtype sublype, int mecsul, Usl<Resul0pons> opons)

bl VesttyAggragabed {UniList unfList, int masEKMRrequesied, BIR ingut80R, UUID referercelay. BlomelncSublyps subfype, int meout. List=Resd lOpons> apons|

wied SatiPows ifdocds (g unitlD, LnilPosssrbMode peraaibiads |

O SO nhE T Ul U A I UE N AThAGE Gl o e | ver N Thack, LU SIAEE el THack Ui ORI ATHACE, TP Toar B Ca el S THECF, QU e T s e G L A a G

veirl LiraubacrbaFromGLUIEvania 1)

il B[] adchonalDinla, LigboResul D agans|

by subtypss, RegiatryiD oulpulF o, byhe]] sddceslDala, vl macil, ListoRaml s sstasr—

nhkardliP £ ml ey Offampls, UUID relarmccalD, Le<Purpeaes porpats. BiomalicSubtype sublyis,. RegalimlD culpuiFarmal, byle]] sddionalData, inl mecul List<RagmlOpanas apone)

' (BT !
int]] Challangs |5 — e - J lw T
intf] il BRI dan S uipe L2 TR BTt L1 Wi | av vk Al HMEEHF
IEEE HE] IaAs ahdves|

L | et et sl L e s L

e

|

LinitCateg
Ll BFF

| sen aborm)

| :
| l

1afae abhoves]

[ET=0F] et

Figure 12 — UML diagram for the BSP structure

8.6 Fram struct

mmmEmE e |

—y ——

IFrameworkSchema FrameworkSchama
woid BSFLoad (LMD bsplD, BFFEveniCalback nolyCallback, BFFEnumeraonCallback BMpEnumsaraon, Sining
Conbext)

vold BSPUnload (UUID baplD, String context)

List=BFPSchema= EnumBFPs)
List<cBEFSchamar EnumBSPg |}

viid Inil { SlEng-vaman)

Lis=BFPLUsIElement= QueryBFPs (LLAD bsplUID)

|s=e abova) (sme above)

wiid InslallBFP (BFPSchema bipSchems, bool updabe)
viaid InsfallBSP (BSPSchema bspSchema, bool updale)
vald UninstallBFF (LU0 &fpLILIE)
woid UninstallBSP (UUID bspUILADY

] Challenge

rd[] Imitiaal BP U Cind e Chukpud !

ni[] SupremumBPUICIndexCutput ot o] UnitCategory Type UnitCatagory
LD BFFID

[aoe above)

(=ee abova) [z2e abova)

Figure 13 — UML diagram for the Framework structure

(420 SR

1888 abovs)

(e above)

(see above)

ise8 abova)

28

© ISO/IEC 2016 - All rights reserved

BS ISO/IEC 30106-
1:2016 ISO/IEC 30106-
1:2016(E)

8.7 Application related structure ‘ ‘

APPLICATION

[-5'3'3 ntl':lluﬂ: -

[see above)] P

int ErrorCode
Facility Sourcea

=

for -ﬂn-:'llr
pUBIE BIcAPIERCERDN TF AT 300rcE, Tnt Code] programiming

public BioAP|Excepon (Facility source, int code, string message)

public BicARPIExcepon (Facility source) int code, Excepon cause)

int GatErrorCodeal)
Facilily GelSource)

Captura
R
_|'d"!||{:r
Varily

Framesark CycleStart

BSP CycleRestart

Unit gcfguﬂ | Capture

pLomplete CreateTemplate
OpCancel ident
ProgressConnue - :..- :
ProgressAbort v
g Werify

Recapiura
SubOpStart
SubCpMext

BiometricSubtype
Sublyps

int Whedth int Hnlgl'l‘.
byte[][] Pixel

Figure 14 — UML diagram for an application related structure

© ISO/IEC 2016 - All rights reserved

29

BS ISO/IEC 30106-1:2016
ISO/IEC 30106-1:2016(E)

ICS 35.040
Price based on 29 pages

© ISO/IEC 2016 - All rights reserved

This page deliberately left blank

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

British Standards Institution (BSI

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs

to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards

You can buy and download PDF versions of B3l publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team,

Subscriptions

Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you'll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription

format, by becoming a BS| Subscribing Member.

PLUS is an updating service exclusive to BS| Subscribing Members. You will
automatically receive the latest hard copy of your standards when they're
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they're available, you can be sure your

documentation is current. For further information, email bsmusalesi@bsigroup.com.

BSI| Group Headquarters
389 Chiswick High Road London W4 4AL UK

bsi.

Revisions

Our British Standards and other publications are updated by amendment or
revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some
person

or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright,
Designs

and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means - electronic, photocopying, recording
or otherwise — without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices(@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

